mirror of
https://github.com/PrismarineJS/node-minecraft-protocol.git
synced 2024-11-14 19:04:59 -05:00
Externalize rsa-wrap to a separate module
This commit is contained in:
parent
b076f97627
commit
50ad0211a5
3 changed files with 3 additions and 653 deletions
2
index.js
2
index.js
|
@ -20,7 +20,7 @@ try {
|
|||
} catch(e) {
|
||||
console.log("You are using a pure-javascript implementation of RSA.");
|
||||
console.log("Your performance might be subpar. Please consider installing URSA");
|
||||
ursa = require("./rsa-wrap");
|
||||
ursa = require("ursa-purejs");
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
|
|
|
@ -37,10 +37,10 @@
|
|||
"dependencies": {
|
||||
"ansi-color": "0.2.1",
|
||||
"buffer-equal": "0.0.0",
|
||||
"node-rsa": "^0.1.53",
|
||||
"node-uuid": "~1.4.1",
|
||||
"prismarine-nbt": "0.0.1",
|
||||
"superagent": "~0.10.0"
|
||||
"superagent": "~0.10.0",
|
||||
"ursa-purejs": "0.0.1"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"ursa": "~0.8.0"
|
||||
|
|
650
rsa-wrap.js
650
rsa-wrap.js
|
@ -1,650 +0,0 @@
|
|||
// Copyright 2012 The Obvious Corporation.
|
||||
|
||||
/*
|
||||
* "ursa": RSA crypto, with an emphasis on Buffer objects
|
||||
*/
|
||||
|
||||
/*
|
||||
* Modules used
|
||||
*/
|
||||
|
||||
"use strict";
|
||||
|
||||
// Note: This also forces OpenSSL to be initialized, which is important!
|
||||
var crypto = require("crypto");
|
||||
|
||||
var assert = require("assert");
|
||||
|
||||
//var ursaNative = require("../bin/ursaNative");
|
||||
var ursaNative = require("node-rsa");
|
||||
|
||||
var RsaWrap = ursaNative;
|
||||
//var textToNid = ursaNative.textToNid;
|
||||
|
||||
|
||||
/*
|
||||
* Variable definitions
|
||||
*/
|
||||
|
||||
/** encoding constant */
|
||||
var BASE64 = "base64";
|
||||
|
||||
/** encoding constant */
|
||||
var BINARY = "binary";
|
||||
|
||||
/** encoding constant */
|
||||
var HEX = "hex";
|
||||
|
||||
/** type name */
|
||||
var STRING = "string";
|
||||
|
||||
/** encoding constant */
|
||||
var UTF8 = "utf8";
|
||||
|
||||
/** hash algorithm constant */
|
||||
var MD5 = "md5";
|
||||
|
||||
/** regex that matches PEM files, capturing the file type */
|
||||
var PEM_REGEX =
|
||||
/^(-----BEGIN (.*) KEY-----\r?\n[\/+=a-zA-Z0-9\r\n]*\r?\n-----END \2 KEY-----\r?\n)/m;
|
||||
|
||||
/** "unsealer" key object to authenticate objects */
|
||||
var theUnsealer = [ "ursa unsealer" ];
|
||||
|
||||
|
||||
/*
|
||||
* Helper functions
|
||||
*/
|
||||
|
||||
/**
|
||||
* Return true iff x is either a string or a Buffer.
|
||||
*/
|
||||
function isStringOrBuffer(x) {
|
||||
return (typeof x === STRING) || Buffer.isBuffer(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Extract and identify the PEM file type represented in the given
|
||||
* buffer. Returns the extracted type string or undefined if the
|
||||
* buffer doesn't seem to be any sort of PEM format file.
|
||||
*/
|
||||
function identifyPemType(buf) {
|
||||
var str = encodeBuffer(buf, UTF8);
|
||||
var match = PEM_REGEX.exec(str);
|
||||
|
||||
if (!match) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
return match[2];
|
||||
}
|
||||
|
||||
/**
|
||||
* Return whether the given buffer or string appears (trivially) to be a
|
||||
* valid public key file in PEM format.
|
||||
*/
|
||||
function isPublicKeyPem(buf) {
|
||||
var kind = identifyPemType(buf);
|
||||
return (kind == "PUBLIC");
|
||||
}
|
||||
|
||||
/**
|
||||
* Return whether the given buffer or string appears (trivially) to be a
|
||||
* valid private key file in PEM format.
|
||||
*/
|
||||
function isPrivateKeyPem(buf) {
|
||||
var kind = identifyPemType(buf);
|
||||
return (kind == "RSA PRIVATE");
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a buffer containing the encoding of the given bigint for use
|
||||
* as part of an SSH-style public key file. The input value must be a
|
||||
* buffer representing an unsigned bigint in big-endian order.
|
||||
*/
|
||||
function toSshBigint(value) {
|
||||
// The output is signed, so we need to add an extra 00 byte at the
|
||||
// head if the high-order bit is set.
|
||||
var prefix00 = ((value[0] & 0x80) !== 0);
|
||||
var length = value.length + (prefix00 ? 1 : 0);
|
||||
var result = new Buffer(length + 4);
|
||||
var offset = 0;
|
||||
|
||||
result.writeUInt32BE(length, offset);
|
||||
offset += 4;
|
||||
|
||||
if (prefix00) {
|
||||
result[offset] = 0;
|
||||
offset++;
|
||||
}
|
||||
|
||||
value.copy(result, offset);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create and return a buffer containing an SSH-style public key file for
|
||||
* the given RsaWrap object.
|
||||
*
|
||||
* For the record, an SSH-style public key file consists of three
|
||||
* concatenated values, each one length-prefixed:
|
||||
*
|
||||
* literal string "ssh-rsa"
|
||||
* exponent
|
||||
* modulus
|
||||
*
|
||||
* The literal string header is length-prefixed. The two numbers are
|
||||
* represented as signed big-int values in big-endian order, also
|
||||
* length-prefixed.
|
||||
*/
|
||||
function createSshPublicKey(rsa) {
|
||||
var e = toSshBigint(rsa.getExponent());
|
||||
var m = toSshBigint(rsa.getModulus());
|
||||
|
||||
var header = toSshBigint(new Buffer("ssh-rsa", UTF8));
|
||||
var result = new Buffer(header.length + m.length + e.length);
|
||||
var offset = 0;
|
||||
|
||||
header.copy(result, offset);
|
||||
offset += header.length;
|
||||
e.copy(result, offset);
|
||||
offset += e.length;
|
||||
m.copy(result, offset);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Validate the given encoding name. Throws an exception if invalid.
|
||||
*/
|
||||
function validateEncoding(encoding) {
|
||||
switch (encoding) {
|
||||
case BASE64:
|
||||
case BINARY:
|
||||
case HEX:
|
||||
case UTF8: {
|
||||
// These are all valid.
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw new Error("Invalid encoding: " + encoding);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert a buffer into an appropriately-encoded string, or return it
|
||||
* unmodified if the encoding is undefined.
|
||||
*/
|
||||
function encodeBuffer(buf, encoding) {
|
||||
if (encoding === undefined) {
|
||||
return buf;
|
||||
}
|
||||
|
||||
validateEncoding(encoding);
|
||||
return buf.toString(encoding);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a buffer or undefined argument as-is, or convert a given
|
||||
* string into a buffer by using the indicated encoding. An undefined
|
||||
* encoding is interpreted to mean UTF8.
|
||||
*/
|
||||
function decodeString(str, encoding) {
|
||||
if ((str === undefined) || Buffer.isBuffer(str)) {
|
||||
return str;
|
||||
}
|
||||
|
||||
if (encoding === undefined) {
|
||||
encoding = UTF8;
|
||||
}
|
||||
|
||||
validateEncoding(encoding);
|
||||
return new Buffer(str, encoding);
|
||||
}
|
||||
|
||||
/**
|
||||
* Public Key object. This is the externally-visible object that one gets
|
||||
* when constructing an instance from a public key. The constructor takes
|
||||
* a native RsaWrap object.
|
||||
*/
|
||||
function PublicKey(rsa) {
|
||||
var self;
|
||||
|
||||
function getExponent(encoding) {
|
||||
var buf = new Buffer(4);
|
||||
buf.writeUInt32BE(rsa.keyPair.e);
|
||||
return encodeBuffer(buf, encoding);
|
||||
}
|
||||
|
||||
function getModulus(encoding) {
|
||||
var buf = new Buffer(4);
|
||||
// TODO : How do I get modulus ?
|
||||
return encodeBuffer(rsa.getModulus(), encoding);
|
||||
}
|
||||
|
||||
function toPublicPem(encoding) {
|
||||
return encodeBuffer(rsa.getPublicPEM() + "\n", encoding);
|
||||
}
|
||||
|
||||
function toPublicSsh(encoding) {
|
||||
return encodeBuffer(createSshPublicKey(rsa), encoding);
|
||||
}
|
||||
|
||||
function toPublicSshFingerprint(encoding) {
|
||||
return sshFingerprint(createSshPublicKey(rsa), undefined, encoding);
|
||||
}
|
||||
|
||||
function encrypt(buf, bufEncoding, outEncoding, padding) {
|
||||
buf = decodeString(buf, bufEncoding);
|
||||
padding = padding || ursaNative.RSA_PKCS1_OAEP_PADDING;
|
||||
return rsa.encrypt(buf);
|
||||
//return encodeBuffer(rsa.publicEncrypt(buf, padding), outEncoding);
|
||||
}
|
||||
|
||||
function publicDecrypt(buf, bufEncoding, outEncoding) {
|
||||
throw new Exception("Unsupported operation : publicDecrypt");
|
||||
//buf = decodeString(buf, bufEncoding);
|
||||
//return encodeBuffer(rsa.publicDecrypt(buf), outEncoding);
|
||||
}
|
||||
|
||||
function verify(algorithm, hash, sig, encoding) {
|
||||
//algorithm = textToNid(algorithm);
|
||||
hash = decodeString(hash, encoding);
|
||||
sig = decodeString(sig, encoding);
|
||||
rsa.options.signingAlgorithm = algorithm;
|
||||
return rsa.verify(hash, sig);
|
||||
}
|
||||
|
||||
function hashAndVerify(algorithm, buf, sig, encoding) {
|
||||
var verifier = createVerifier(algorithm);
|
||||
verifier.update(buf, encoding);
|
||||
return verifier.verify(self, sig, encoding);
|
||||
}
|
||||
|
||||
function unseal(unsealer) {
|
||||
return (unsealer === theUnsealer) ? self : undefined;
|
||||
}
|
||||
|
||||
self = {
|
||||
encrypt: encrypt,
|
||||
getExponent: getExponent,
|
||||
getModulus: getModulus,
|
||||
hashAndVerify: hashAndVerify,
|
||||
publicDecrypt: publicDecrypt,
|
||||
toPublicPem: toPublicPem,
|
||||
toPublicSsh: toPublicSsh,
|
||||
toPublicSshFingerprint: toPublicSshFingerprint,
|
||||
verify: verify,
|
||||
unseal: unseal
|
||||
};
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
/**
|
||||
* Private Key object. This is the externally-visible object that one
|
||||
* gets when constructing an instance from a private key (aka a
|
||||
* keypair). The constructor takes a native RsaWrap object.
|
||||
*/
|
||||
function PrivateKey(rsa) {
|
||||
var self;
|
||||
|
||||
function toPrivatePem(encoding) {
|
||||
return encodeBuffer(rsa.getPrivatePEM(), encoding);
|
||||
}
|
||||
|
||||
function decrypt(buf, bufEncoding, outEncoding, padding) {
|
||||
buf = decodeString(buf, bufEncoding);
|
||||
padding = padding || ursaNative.RSA_PKCS1_OAEP_PADDING;
|
||||
return encodeBuffer(rsa.decrypt(buf), outEncoding);
|
||||
//return encodeBuffer(rsa.privateDecrypt(buf, padding), outEncoding);
|
||||
}
|
||||
|
||||
function privateEncrypt(buf, bufEncoding, outEncoding) {
|
||||
throw new Exception("Unsupported operation : Private encrypt");
|
||||
buf = decodeString(buf, bufEncoding);
|
||||
return encodeBuffer(rsa.privateEncrypt(buf), outEncoding);
|
||||
}
|
||||
|
||||
function sign(algorithm, hash, hashEncoding, outEncoding) {
|
||||
//algorithm = textToNid(algorithm);
|
||||
hash = decodeString(hash, hashEncoding);
|
||||
rsa.options.signingAlgorithm = algorithm;
|
||||
return encodeBuffer(rsa.sign(hash), outEncoding);
|
||||
}
|
||||
|
||||
function hashAndSign(algorithm, buf, bufEncoding, outEncoding) {
|
||||
var signer = createSigner(algorithm);
|
||||
signer.update(buf, bufEncoding);
|
||||
return signer.sign(self, outEncoding);
|
||||
}
|
||||
|
||||
self = PublicKey(rsa);
|
||||
self.decrypt = decrypt;
|
||||
self.hashAndSign = hashAndSign;
|
||||
self.privateEncrypt = privateEncrypt;
|
||||
self.sign = sign;
|
||||
self.toPrivatePem = toPrivatePem;
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Exported bindings
|
||||
*/
|
||||
|
||||
/**
|
||||
* Create a new public key object, from the given PEM-encoded file.
|
||||
*/
|
||||
function createPublicKey(pem, encoding) {
|
||||
var rsa = new RsaWrap();
|
||||
pem = decodeString(pem, encoding);
|
||||
|
||||
try {
|
||||
rsa.loadFromPEM(pem.toString('utf8'));
|
||||
} catch (ex) {
|
||||
if (!isPublicKeyPem(pem)) {
|
||||
throw new Error("Not a public key.");
|
||||
}
|
||||
throw ex;
|
||||
}
|
||||
|
||||
return PublicKey(rsa);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new private key object, from the given PEM-encoded file,
|
||||
* optionally decrypting the file with a password.
|
||||
*/
|
||||
function createPrivateKey(pem, password, encoding) {
|
||||
var rsa = new RsaWrap();
|
||||
//pem = decodeString(pem, encoding);
|
||||
//password = decodeString(password, encoding);
|
||||
|
||||
try {
|
||||
// Note: The native code is sensitive to the actual number of
|
||||
// arguments. It's *not* okay to pass undefined as a password.
|
||||
if (password) {
|
||||
throw new Exception("Unsupported method : createPrivateKey with password");
|
||||
//rsa.setPrivateKeyPem(pem, password);
|
||||
} else {
|
||||
rsa.loadFromPEM(pem);
|
||||
}
|
||||
} catch (ex) {
|
||||
if (!isPrivateKeyPem(pem)) {
|
||||
throw new Error("Not a private key.");
|
||||
}
|
||||
throw ex;
|
||||
}
|
||||
|
||||
return PrivateKey(rsa);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a new private key object (aka a keypair).
|
||||
*/
|
||||
function generatePrivateKey(modulusBits, exponent) {
|
||||
if (modulusBits === undefined) {
|
||||
modulusBits = 2048;
|
||||
}
|
||||
|
||||
if (exponent === undefined) {
|
||||
exponent = 65537;
|
||||
}
|
||||
|
||||
var rsa = new RsaWrap();
|
||||
rsa.generateKeyPair(modulusBits, exponent);
|
||||
|
||||
return PrivateKey(rsa);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a key object from a PEM format file, either a private or
|
||||
* public key depending on what kind of file is passed in. If given
|
||||
* a private key file, it must not be encrypted.
|
||||
*/
|
||||
function createKey(pem, encoding) {
|
||||
pem = decodeString(pem, encoding);
|
||||
|
||||
if (isPublicKeyPem(pem)) {
|
||||
return createPublicKey(pem);
|
||||
} else if (isPrivateKeyPem(pem)) {
|
||||
return createPrivateKey(pem);
|
||||
} else {
|
||||
throw new Error("Not a key.");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the SSH-style public key fingerprint of the given SSH-format
|
||||
* public key.
|
||||
*/
|
||||
function sshFingerprint(sshKey, sshEncoding, outEncoding) {
|
||||
var hash = crypto.createHash(MD5);
|
||||
|
||||
hash.update(decodeString(sshKey, sshEncoding));
|
||||
var result = new Buffer(hash.digest(BINARY), BINARY);
|
||||
return encodeBuffer(result, outEncoding);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return whether the given object is a key object (either public or
|
||||
* private), as constructed by this module.
|
||||
*/
|
||||
function isKey(obj) {
|
||||
var obj2;
|
||||
|
||||
try {
|
||||
var unseal = obj.unseal;
|
||||
if (typeof unseal !== "function") {
|
||||
return false;
|
||||
}
|
||||
obj2 = unseal(theUnsealer);
|
||||
} catch (ex) {
|
||||
// Ignore; can't assume that other objects obey any particular
|
||||
// unsealing protocol.
|
||||
// TODO: Log?
|
||||
return false;
|
||||
}
|
||||
|
||||
return obj2 !== undefined;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return whether the given object is a private key object, as
|
||||
* constructed by this module.
|
||||
*/
|
||||
function isPrivateKey(obj) {
|
||||
return isKey(obj) && (obj.decrypt !== undefined);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return whether the given object is a public key object (per se), as
|
||||
* constructed by this module.
|
||||
*/
|
||||
function isPublicKey(obj) {
|
||||
return isKey(obj) && !isPrivateKey(obj);
|
||||
}
|
||||
|
||||
/**
|
||||
* Assert wrapper for isKey().
|
||||
*/
|
||||
function assertKey(obj) {
|
||||
assert(isKey(obj));
|
||||
}
|
||||
|
||||
/**
|
||||
* Assert wrapper for isPrivateKey().
|
||||
*/
|
||||
function assertPrivateKey(obj) {
|
||||
assert(isPrivateKey(obj));
|
||||
}
|
||||
|
||||
/**
|
||||
* Assert wrapper for isPublicKey().
|
||||
*/
|
||||
function assertPublicKey(obj) {
|
||||
assert(isPublicKey(obj));
|
||||
}
|
||||
|
||||
/**
|
||||
* Coerce the given key value into an private key object, returning
|
||||
* it. If given a private key object, this just returns it as-is. If
|
||||
* given a string or Buffer, it tries to parse it as PEM. Anything
|
||||
* else is an error.
|
||||
*/
|
||||
function coercePrivateKey(orig) {
|
||||
if (isPrivateKey(orig)) {
|
||||
return orig;
|
||||
} else if (isStringOrBuffer(orig)) {
|
||||
return createPrivateKey(orig);
|
||||
}
|
||||
|
||||
throw new Error("Not a private key: " + orig);
|
||||
}
|
||||
|
||||
/**
|
||||
* Coerce the given key value into a public key object, returning
|
||||
* it. If given a private key object, this just returns it as-is. If
|
||||
* given a string or Buffer, it tries to parse it as PEM. Anything
|
||||
* else is an error.
|
||||
*/
|
||||
function coercePublicKey(orig) {
|
||||
if (isPublicKey(orig)) {
|
||||
return orig;
|
||||
} else if (isStringOrBuffer(orig)) {
|
||||
return createPublicKey(orig);
|
||||
}
|
||||
|
||||
throw new Error("Not a public key: " + orig);
|
||||
}
|
||||
|
||||
/**
|
||||
* Coerce the given key value into a key object (either public or
|
||||
* private), returning it. If given a private key object, this just
|
||||
* returns it as-is. If given a string or Buffer, it tries to parse it
|
||||
* as PEM. Anything else is an error.
|
||||
*/
|
||||
function coerceKey(orig) {
|
||||
if (isKey(orig)) {
|
||||
return orig;
|
||||
} else if (isStringOrBuffer(orig)) {
|
||||
return createKey(orig);
|
||||
}
|
||||
|
||||
throw new Error("Not a key: " + orig);
|
||||
}
|
||||
|
||||
/**
|
||||
* Check whether the two objects are both keys of some sort and
|
||||
* have the same public part.
|
||||
*/
|
||||
function matchingPublicKeys(key1, key2) {
|
||||
if (!(isKey(key1) && isKey(key2))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// This isn't the most efficient implementation, but it will suffice:
|
||||
// We convert both to ssh form, which has very little leeway for
|
||||
// variation, and compare bytes.
|
||||
|
||||
var ssh1 = key1.toPublicSsh(UTF8);
|
||||
var ssh2 = key2.toPublicSsh(UTF8);
|
||||
|
||||
return ssh1 === ssh2;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check whether the two objects are both keys of some sort, are
|
||||
* both public or both private, and have the same contents.
|
||||
*/
|
||||
function equalKeys(key1, key2) {
|
||||
// See above for rationale. In this case, there's no ssh form for
|
||||
// private keys, so we just use PEM for that.
|
||||
|
||||
if (isPrivateKey(key1) && isPrivateKey(key2)) {
|
||||
var pem1 = key1.toPrivatePem(UTF8);
|
||||
var pem2 = key2.toPrivatePem(UTF8);
|
||||
return pem1 === pem2;
|
||||
}
|
||||
|
||||
if (isPublicKey(key1) && isPublicKey(key2)) {
|
||||
return matchingPublicKeys(key1, key2);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a signer object.
|
||||
*/
|
||||
function createSigner(algorithm) {
|
||||
var hash = crypto.createHash(algorithm);
|
||||
|
||||
function update(buf, bufEncoding) {
|
||||
buf = decodeString(buf, bufEncoding);
|
||||
hash.update(buf);
|
||||
}
|
||||
|
||||
function sign(privateKey, outEncoding) {
|
||||
var hashBuf = new Buffer(hash.digest(BINARY), BINARY);
|
||||
return privateKey.sign(algorithm, hashBuf, undefined, outEncoding);
|
||||
}
|
||||
|
||||
return {
|
||||
sign: sign,
|
||||
update: update
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a verifier object.
|
||||
*/
|
||||
function createVerifier(algorithm) {
|
||||
var hash = crypto.createHash(algorithm);
|
||||
|
||||
function update(buf, bufEncoding) {
|
||||
buf = decodeString(buf, bufEncoding);
|
||||
hash.update(buf);
|
||||
}
|
||||
|
||||
function verify(publicKey, sig, sigEncoding) {
|
||||
var hashBuf = new Buffer(hash.digest(BINARY), BINARY);
|
||||
sig = decodeString(sig, sigEncoding);
|
||||
return publicKey.verify(algorithm, hashBuf, sig);
|
||||
}
|
||||
|
||||
return {
|
||||
update: update,
|
||||
verify: verify
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Initialization
|
||||
*/
|
||||
|
||||
module.exports = {
|
||||
assertKey: assertKey,
|
||||
assertPrivateKey: assertPrivateKey,
|
||||
assertPublicKey: assertPublicKey,
|
||||
coerceKey: coerceKey,
|
||||
coercePrivateKey: coercePrivateKey,
|
||||
coercePublicKey: coercePublicKey,
|
||||
createKey: createKey,
|
||||
createPrivateKey: createPrivateKey,
|
||||
createPublicKey: createPublicKey,
|
||||
createSigner: createSigner,
|
||||
createVerifier: createVerifier,
|
||||
equalKeys: equalKeys,
|
||||
generatePrivateKey: generatePrivateKey,
|
||||
isKey: isKey,
|
||||
isPrivateKey: isPrivateKey,
|
||||
isPublicKey: isPublicKey,
|
||||
matchingPublicKeys: matchingPublicKeys,
|
||||
sshFingerprint: sshFingerprint,
|
||||
RSA_PKCS1_PADDING: ursaNative.RSA_PKCS1_PADDING,
|
||||
RSA_PKCS1_OAEP_PADDING: ursaNative.RSA_PKCS1_OAEP_PADDING,
|
||||
};
|
Loading…
Reference in a new issue