Funkin/source/funkin/util/MathUtil.hx

131 lines
4.3 KiB
Haxe

package funkin.util;
/**
* Utilities for performing mathematical operations.
*/
class MathUtil
{
/**
* Euler's constant and the base of the natural logarithm.
* Math.E is not a constant in Haxe, so we'll just define it ourselves.
*/
public static final E:Float = 2.71828182845904523536;
/**
* Perform linear interpolation between the base and the target, based on the current framerate.
* @param base The starting value, when `progress <= 0`.
* @param target The ending value, when `progress >= 1`.
* @param ratio Value used to interpolate between `base` and `target`.
*
* @return The interpolated value.
*/
@:deprecated('Use smoothLerp instead')
public static function coolLerp(base:Float, target:Float, ratio:Float):Float
{
return base + cameraLerp(ratio) * (target - base);
}
/**
* Perform linear interpolation based on the current framerate.
* @param lerp Value used to interpolate between `base` and `target`.
*
* @return The interpolated value.
*/
@:deprecated('Use smoothLerp instead')
public static function cameraLerp(lerp:Float):Float
{
return lerp * (FlxG.elapsed / (1 / 60));
}
/**
* Get the logarithm of a value with a given base.
* @param base The base of the logarithm.
* @param value The value to get the logarithm of.
* @return `log_base(value)`
*/
public static function logBase(base:Float, value:Float):Float
{
return Math.log(value) / Math.log(base);
}
public static function easeInOutCirc(x:Float):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
var result:Float = (x < 0.5) ? (1 - Math.sqrt(1 - 4 * x * x)) / 2 : (Math.sqrt(1 - 4 * (1 - x) * (1 - x)) + 1) / 2;
return (result == Math.NaN) ? 1.0 : result;
}
public static function easeInOutBack(x:Float, ?c:Float = 1.70158):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
var result:Float = (x < 0.5) ? (2 * x * x * ((c + 1) * 2 * x - c)) / 2 : (1 - 2 * (1 - x) * (1 - x) * ((c + 1) * 2 * (1 - x) - c)) / 2;
return (result == Math.NaN) ? 1.0 : result;
}
public static function easeInBack(x:Float, ?c:Float = 1.70158):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
return (1 + c) * x * x * x - c * x * x;
}
public static function easeOutBack(x:Float, ?c:Float = 1.70158):Float
{
if (x <= 0.0) return 0.0;
if (x >= 1.0) return 1.0;
return 1 + (c + 1) * Math.pow(x - 1, 3) + c * Math.pow(x - 1, 2);
}
/**
* Get the base-2 logarithm of a value.
* @param x value
* @return `2^x`
*/
public static function exp2(x:Float):Float
{
return Math.pow(2, x);
}
/**
* Linearly interpolate between two values.
*
* @param base The starting value, when `progress <= 0`.
* @param target The ending value, when `progress >= 1`.
* @param progress Value used to interpolate between `base` and `target`.
* @return The interpolated value.
*/
public static function lerp(base:Float, target:Float, progress:Float):Float
{
return base + progress * (target - base);
}
/**
* Perform a framerate-independent linear interpolation between the base value and the target.
* @param current The current value.
* @param target The target value.
* @param elapsed The time elapsed since the last frame.
* @param duration The total duration of the interpolation. Nominal duration until remaining distance is less than `precision`.
* @param precision The target precision of the interpolation. Defaults to 1% of distance remaining.
* @see https://twitter.com/FreyaHolmer/status/1757918211679650262
*
* @return A value between the current value and the target value.
*/
public static function smoothLerp(current:Float, target:Float, elapsed:Float, duration:Float, precision:Float = 1 / 100):Float
{
// An alternative algorithm which uses a separate half-life value:
// var halfLife:Float = -duration / logBase(2, precision);
// lerp(current, target, 1 - exp2(-elapsed / halfLife));
if (current == target) return target;
var result:Float = lerp(current, target, 1 - Math.pow(precision, elapsed / duration));
// TODO: Is there a better way to ensure a lerp which actually reaches the target?
// Research a framerate-independent PID lerp.
if (Math.abs(result - target) < (precision * target)) result = target;
return result;
}
}