package funkin.audio.visualize.dsp; import funkin.audio.visualize.dsp.Complex; using funkin.audio.visualize.dsp.OffsetArray; using funkin.audio.visualize.dsp.Signal; // these are only used for testing, down in FFT.main() /** Fast/Finite Fourier Transforms. **/ class FFT { /** Computes the Discrete Fourier Transform (DFT) of a `Complex` sequence. If the input has N data points (N should be a power of 2 or padding will be added) from a signal sampled at intervals of 1/Fs, the result will be a sequence of N samples from the Discrete-Time Fourier Transform (DTFT) - which is Fs-periodic - with a spacing of Fs/N Hz between them and a scaling factor of Fs. **/ public static function fft(input:Array):Array return do_fft(input, false); /** Like `fft`, but for a real (Float) sequence input. Since the input time signal is real, its frequency representation is Hermitian-symmetric so we only return the positive frequencies. **/ public static function rfft(input:Array):Array { final s = fft(input.map(Complex.fromReal)); return s.slice(0, Std.int(s.length / 2) + 1); } /** Computes the Inverse DFT of a periodic input sequence. If the input contains N (a power of 2) DTFT samples, each spaced Fs/N Hz from each other, the result will consist of N data points as sampled from a time signal at intervals of 1/Fs with a scaling factor of 1/Fs. **/ public static function ifft(input:Array):Array return do_fft(input, true); // Handles padding and scaling for forwards and inverse FFTs. static function do_fft(input:Array, inverse:Bool):Array { final n = nextPow2(input.length); var ts = [for (i in 0...n) if (i < input.length) input[i] else Complex.zero]; var fs = [for (_ in 0...n) Complex.zero]; ditfft2(ts, 0, fs, 0, n, 1, inverse); return inverse ? fs.map(z -> z.scale(1 / n)) : fs; return fs; } // Radix-2 Decimation-In-Time variant of Cooley–Tukey's FFT, recursive. static function ditfft2(time:Array, t:Int, freq:Array, f:Int, n:Int, step:Int, inverse:Bool):Void { if (n == 1) { freq[f] = time[t].copy(); } else { final halfLen = Std.int(n / 2); ditfft2(time, t, freq, f, halfLen, step * 2, inverse); ditfft2(time, t + step, freq, f + halfLen, halfLen, step * 2, inverse); for (k in 0...halfLen) { final twiddle = Complex.exp((inverse ? 1 : -1) * 2 * Math.PI * k / n); final even = freq[f + k].copy(); final odd = freq[f + k + halfLen].copy(); freq[f + k] = even + twiddle * odd; freq[f + k + halfLen] = even - twiddle * odd; } } } // Naive O(n^2) DFT, used for testing purposes. static function dft(ts:Array, ?inverse:Bool):Array { if (inverse == null) inverse = false; final n = ts.length; var fs = new Array(); fs.resize(n); for (f in 0...n) { var sum = Complex.zero; for (t in 0...n) { sum += ts[t] * Complex.exp((inverse ? 1 : -1) * 2 * Math.PI * f * t / n); } fs[f] = inverse ? sum.scale(1 / n) : sum; } return fs; } /** Finds the power of 2 that is equal to or greater than the given natural. **/ static function nextPow2(x:Int):Int { if (x < 2) return 1; else if ((x & (x - 1)) == 0) return x; var pow = 2; x--; while ((x >>= 1) != 0) pow <<= 1; return pow; } // testing, but also acts like an example static function main() { // sampling and buffer parameters final Fs = 44100.0; final N = 512; final halfN = Std.int(N / 2); // build a time signal as a sum of sinusoids final freqs = [5919.911]; final ts = [for (n in 0...N) freqs.map(f -> Math.sin(2 * Math.PI * f * n / Fs)).sum()]; // get positive spectrum and use its symmetry to reconstruct negative domain final fs_pos = rfft(ts); final fs_fft = new OffsetArray([for (k in -(halfN - 1)...0) fs_pos[-k].conj()].concat(fs_pos), -(halfN - 1)); // double-check with naive DFT final fs_dft = new OffsetArray(dft(ts.map(Complex.fromReal)).circShift(halfN - 1), -(halfN - 1)); final fs_err = [for (k in -(halfN - 1)...halfN) fs_fft[k] - fs_dft[k]]; final max_fs_err = fs_err.map(z -> z.magnitude).max(); if (max_fs_err > 1e-6) haxe.Log.trace('FT Error: ${max_fs_err}', null); // else for (k => s in fs_fft) haxe.Log.trace('${k * Fs / N};${s.scale(1 / Fs).magnitude}', null); // find spectral peaks to detect signal frequencies final freqis = fs_fft.array.map(z -> z.magnitude) .findPeaks() .map(k -> (k - (halfN - 1)) * Fs / N) .filter(f -> f >= 0); if (freqis.length != freqs.length) { trace('Found frequencies: ${freqis}'); } else { final freqs_err = [for (i in 0...freqs.length) freqis[i] - freqs[i]]; final max_freqs_err = freqs_err.map(Math.abs).max(); if (max_freqs_err > Fs / N) trace('Frequency Errors: ${freqs_err}'); } // recover time signal from the frequency domain final ts_ifft = ifft(fs_fft.array.circShift(-(halfN - 1)).map(z -> z.scale(1 / Fs))); final ts_err = [for (n in 0...N) ts_ifft[n].scale(Fs).real - ts[n]]; final max_ts_err = ts_err.map(Math.abs).max(); if (max_ts_err > 1e-6) haxe.Log.trace('IFT Error: ${max_ts_err}', null); // else for (n in 0...ts_ifft.length) haxe.Log.trace('${n / Fs};${ts_ifft[n].scale(Fs).real}', null); } }